Characterising agrometeorological climate risks and uncertainties: Crop production in Uganda

Summary
Description
Uganda is vulnerable to climate change, as most of its agriculture is rainfed; yet agriculture is the backbone of the economy, and the livelihoods of many people depend on it. Any slight variability in rainfall may therefore be reflected in the productivity of agricultural systems and pronounced variability may result in adverse physical, environmental and socio-economic impacts. Common physical impacts may include drought or floods, environmental impacts may include the loss of biodiversity and vegetation cover and socio-economic impacts may include famine and transhumance. Rainfall across the country is currently unreliable and highly variable in terms of its onset, cessation, amount and distribution, leading to either low crop yields or total crop failure.
In addition, the use of rudimentary implements, poor crop husbandry practices and a lack of precise information on rainfall onset, duration, amount and cessation make smallholder farming a risky business.
In most instances, farmers start tilling land after the onset of rainfall, and therefore valuable moisture is lost before they finally plant. In reality, potential crop productivity is never attained as a result of a mismatch between the timing of optimum moisture conditions and the crop’s peak water requirements. Farming is therefore prone to risks because of the seasonal distribution and variable nature of rainfall in space and time, coupled with its unpredictability. Extreme climatic variability, such as droughts and floods, has severe impacts on agricultural production, often leading to instability in agricultural production systems. The National Adaptation Programs of Action (NAPA) note that poor rains affect pastures and livestock in most pastoral areas of the country, resulting in the migration of thousands of people and their animals in search of water and food. Jennings and Magrath observed that rains excessive in both intensity and duration lead to water-logging that negatively affects crops and pasture. These conditions are also detrimental to the post-harvest handling and storage of crops. It is therefore essential to generate seasonal characteristics in order to use rainfall regimes optimally for maximum production vis-à-vis water use efficiency. Furthermore, given the implication of long-term projections for climate change, generating seasonal characteristics will not only be important in guiding strategic and tactical decision-making, but will also define the direction of change along the weather-climate continuum for planning adaptation strategies. According to the Food and Agriculture Organization, risk exists when there is uncertainty about the future outcomes of ongoing processes or about the occurrence of future events. Adaptation is about reducing and responding to the risks that climate change pose to people’s lives and livelihoods. Reducing uncertainty by improving the information base and devising innovative schemes for insuring against climate change hazards are important for successful adaptation, which was the motivation for this study. This risk in agricultural productivity is not confined to Uganda, but exists for other countries in sub-Saharan Africa. Tadross reported that Mozambique’s exposure to the risk of natural disasters would increase significantly over the coming 20 years and beyond as a result of climate change. It is therefore vital that decision-makers are made aware of this risk and act now to incorporate climate change risks into infrastructural planning and investments, as well as to establish national response plans to climate change.
Related Content
Subscribe To Our Newsletter Today
Our Partners