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Abstract 

River Mpologoma catchment is one of Uganda’s water resources that is vastly relied on for 

supporting agricultural livelihoods among other activities. Stream flow is an important feature 

used to determine availability of water in surface water resources and is partly formed from 

rainfall. This study sought to assess the effect of rainfall variability on streamflow behaviour 

in Mpologoma catchment and to project future streamflow behaviours. Daily rainfall and 

discharge data for four stations located in the catchment were obtained for the period 1981 – 

2015. Totals (for rainfall) and averages (for discharge) were generated for the annual period as 

well as for the major wet seasons March-May and September-November after which low flow, 

average flow and peak flow statistics were computed. The Mann-Kendall test was used to 

assess trends in streamflow while the Pearson correlation and time-series regression analysis 

were used to investigate the relationship between rainfall and streamflow. Future rainfall data 

(2021 – 2040) were down scaled using the CORDEX program for 2 climate scenarios (RCP 

4.5 and RCP 8.5) after which streamflow were forecasted from the fitted regression equations 

by extrapolation. The Mann-Whitney U-test was used to examine if future changes in 

streamflow were significant. Results reveal that over time, low and peak flow within 

Mpologoma catchment are highly variable (CV > 60%) especially during the wet seasons. 

Significant negative and positive trends were observed in the MAM low flows and SON peak 

flows respectively. The results further show that low flow, peak flow and average flow are 

positively correlated (p < 0.05) with MAM, SON and annual rainfall respectively. Time series 

regression shows that rainfall has a significant influence on streamflow where a 1 mm increase 

in rainfall at a given time resulted in a 0.2%-0.7% instant rise in streamflow. Future projections 

suggest that low flow during the MAM season is expected to decline by 66%-77% whilst 

annual average flow is expected to fall by 58%-64%. On the contrary, peak flow for the SON 

season is not expected to change in the near future. The study concludes that annual and 

seasonal rainfall variability threatens water availability in the Mpologoma river catchment. The 

projected decline in streamflow is expected to bring about water scarcity in the area which 

would threaten agricultural production and livelihood in general. The study recommends that 

adaptation measures be devloped to mitigate the anticipated impacts of water shortages.
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CHAPTER ONE 

INTRODUCTION 

1.1. Background 

Globally, fresh water resources are regarded as a key strategic resource, vital for sustaining 

life, promoting development and maintaining the environment. Water availability is one of the 

essential conditions that influences the wellbeing of human society and is considered a key 

factor for sustainable development (Nsubuga et al. 2014). It is vital for domestic water supply, 

livestock, industrial operations, hydropower generation, agriculture, marine transport, 

fisheries, waste discharge, tourism, and environmental conservation. The general appearance 

of abundant water resources is quite misleading for it does not highlight the supply, demand 

and quantity in relation to climate change, which presents a threat to the available water 

resources (Lagerblad, 2010; Quilbé et al. 2008).  

Torabi Haghighi et al., (2021) and Chen et al., (2023) reveal that streamflow of many rivers 

worldwide have been changing because of effects of climate change. The hydrological 

variables especially rainfall and runoff are greatly impacted by climate change which raises 

concerns about their future behavior (Sangüesa et al., 2023). The variations in rainfall affects 

evaporation either positively or negatively with the corresponding effect on streamflow (Akpoti 

et al., 2016; Coleman & Jain, 2023). Sangüesa et al., (2023) stress that negative trends in 

streamflow have been realized in central Chile. Higgins et al., (2022) also reveal that the 

increasing frequency and intensity of rainfall strongly influence streamflow variability in the 

northern region of Australia. These extreme and unexpected changes in streamflow impact 

human use and ecosystem health and sustainability (Coleman & Jain, 2023). In West Africa, 

increase in precipitation has been reported to increase the water yield to streamflow (Akpoti et 

al., 2016) while 10% relative decrease in precipitation resulted in a 16% decrease in runoff 

between 1936 and 1998 (Conway et al., 2009; Oti et al., 2020). On a global scale the variability 

of rainfall in the tropics is influenced by the Sea Surface Temperature (SST) across the equator 

and this in the end has an impact on streamflow. 

Uganda’s rivers and lakes, including wetlands, cover about 18% of the total surface area of the 

country, with rainfall being the greatest contributor to the surface and ground water resources 

(Nsubuga et al. 2014). Mpologoma river catchment is one of Uganda’s renown water resources 

found within Lake Kyoga basin and has an estimated water demand of 250 million m3 per year 
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of which 77% is used for irrigation (Ministry of Water and Environment - MWE, 2016). The 

catchment covers a total of 10 districts with an estimated population of about 4.9 million 

people. The catchment is a major source of livelihood where it is greatly relied on for 

supporting socio-economic activities. Rain fed agriculture and livestock grazing are the most 

widespread activities in the catchment. More than half of the total land area is used for 

cultivation (Verdonck & Michel, 2016). 

Stream flow in Mpologoma catchment as a resource has been categorized in different uses: 

Industry (the fisheries docked use it for processing), Livestock grazing and drinking, water 

supply development of pipelines and sanitation facilities and Irrigation by the two major rice 

schemes in the catchment: Doho and Kibimba are key in irrigation. Its demand has ensued 

stress on the water resources especially during the Period from May to November (DWRM, 

2019). 

Streamflow also known as river discharge is defined as water flow within a river channel 

usually expressed in m3/s. It has two components, namely; base flow that originates from 

ground water storage and quick flow that is mainly formed by precipitation. Streamflow is 

directly associated with base flow and other delayed sources like wetlands, lakes and melting 

snow (Beck et al., 2013). Streamflow features are used by hydrologists, planners and water 

managers as benchmarks to determine the availability of water for industrial supply, establish 

waste disposal thresholds, assess aquatic habitat needs and design capacity of reservoirs or 

bridges, among other purposes (Arora et al., 2014; Bhatt & Mall, 2015; Gotvald, 2017). Water 

availability from surface water sources depends on the seasonality and inter-annual variability 

of streamflow. Streamflow evaluation is therefore important for water resource planning, 

management, and sustainable ecosystem maintenance. 

Streamflow regimes continue to play a major role in understanding the river flow variations, 

conservation planning for ecosystems and providing an inventory for hydrological water 

resource management (Berhanu et al. 2015). However, streamflow regimes have been found 

to be greatly influenced by climate patterns (Hameed et al. 2017). A recent study by the 

Intergovernmental Panel on Climate Change (IPCC, 2014) relays that climate has changed and 

will continue to change in response to anthropogenic increases in greenhouse gas emissions. 

In many regions, changing precipitation or melting snow and ice are altering hydrological 

systems, affecting water resources in terms of quantity and quality. It has been estimated that 

global-mean temperature may increase by 1.50C to 4.50C during the first half of the 21st century. 
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Along with changes in temperature, changes in precipitation are bound to occur. Thus a 

growing concern about the potential effect of such changes on water resource features such as 

natural streams which are an important determinant of fresh water diversity and ecological 

processes (Dhungel, 2014). 

Climate change in Uganda continues to manifest itself in form of increased extremes as well 

as changes in the rainfall patterns and seasonality, a case in point being the recurrent floods 

and landslides in Eastern and Western Uganda (Red Cross, 2010). Such variations in climatic 

patterns have caused alterations in the hydrological cycle of water catchment areas across the 

country majorly through increased evaporation and intense rainfall that affect the availability, 

quantity and quality of water resources. Mpologoma is one such catchment that heavily relies 

on rainfall for its streamflow and is thus prone to floods and prolonged dry-spells as indicated 

by the recent drying up of some of its streams (Directorate of Water Department - DWD, 2017). 

Managing water has always meant dealing with natural variability but climate change threatens 

to increase this variability by shifting and intensifying extremes. Although increases in 

temperature may be the clearest indicator of the ongoing climate change, changes in the amount 

and variability of rainfall and evapotranspiration will have the largest impact on hydrological 

systems most especially freshwater ecosystems (Bates et al., 2008). Since most of Uganda’s 

population still depends directly on rain-fed agriculture, it is important that the relationship 

between climate and water resources management is given special consideration. This study 

therefore undertook a quantitative assessment of the effect of rainfall variability on streamflow 

with specific reference to Mpologoma river catchment. The goal of the study was to predict 

streamflow trends for the catchment under future climatic conditions. 

1.2. Statement of the problem 

Studies conducted in Lake Kyoga basin and Eastern Uganda at large (Kansiime et al., 2013; 

Ogwang et al., 2012) suggest that there has been an increase in rainfall variability and the 

frequency and severity of extreme weather events such as droughts and floods in the recent 

past. In particular, flood and landslide disasters triggered by prolonged rainfall, have been 

known to frequently occur in Teso region, Butaleja, Sironko, Tororo, Mbale, Bududa and 

Manafwa districts (UNEMA, 2010). Such variations in rainfall have been majorly attributed to 

climate change that is associated with the observed increase in anthropogenic greenhouse gas 

emissions (IPCC, 2014). A study by Oratungye et al. (2017) further shows that the Mar-May 

season in the region has experienced significant decline in rainfall volume whereas a reverse 
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pattern has been observed for the Sep-Nov season. According to IPCC (2014), these variations 

in rainfall are expected to continue even in the future.  

Rainfall variability has been studied near and over the study area. For instance (Ngoma et al., 

2021; Onyutha, Asiimwe, et al., 2021) studied rainfall variability over Uganda. Onyutha et al., 

(2020) analysed precipitation changes over Lake Kyoga basin where Mpologoma catchment 

lies while rainfall variability has been studied in Sipi sub-catchment which forms part of 

Mpologoma catchment (Luwa et al., 2021). Other studies have been specifically localized to 

Mpologoma catchment (Mubialiwo et al., 2020, 2023). Even with the wide study of rainfall 

variability, results from different spatio-temporal scales are inconclusive and give mixed 

results (Luwa et al., 2021)(Nsubuga et al., 2014). Additionally, few studies have related rainfall 

variability to streamflow changes (Kangume & Mulungu, 2018; Luwa et al., 2021). It is 

important to conduct trend analyses for both rainfall and streamflow at localised Mpologoma 

catchment scale (Mubialiwo et al., 2023). Rainfall and streamflow data are vital in 

understanding stream flow dynamics in any given watershed (Ashraf et al., 2020).  

Studies on the impact of rainfall variability on the streamflow within River Mpologoma 

catchment have often used models like SWAT, HEC-HMS to determine stream flow (Ogwang 

et al., 2012; Kansiime et al. 2013) These models have been with limitations in determining 

streamflow characteristics because they do not  consider some stream flows parameters e.g. 

quartiles and percentiles that are key to study climatic related effects .There are limited studies 

that have deployed some models like the CORDEX and parameters such as  7Q10  7Qmin, 

7Qmax to provide information on how stream flow responds to rainfall and or climate change 

in the present and near future. 

It remains unknown to what extent rainfall will affect streamflow in river catchments such as 

Mpologoma. Previous studies on prediction of streamflow behaviour from climate patterns 

have reported mixed conclusions with some projecting declines in streamflow in the future 

(IPCC, 2008; Kigobe and Griensven, 2010) while others have predicted significant rise in 

streamflow under future climate scenarios (Bates et al., 2008; Taye et al., 2011; Adem et al. 

2016). Such contrasting findings cannot be generalized to the study area. Therefore, the study 

sought to provide information on how streamflow in Mpologoma river catchment will respond 

to rainfall variations in the near future. 
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1.3. Objectives of the study 

1.3.1 General Objective 

To contribute to the understanding of streamflow behavior within the Mpologoma catchment 

under future climate conditions 

1.3.2 Specific Objectives 

1. Determine the trend in streamflow for R. Mpologoma catchment from 1981 to 2015 

2. Establish the relationship between rainfall and streamflow in R. Mpologoma catchment 

3. Predict streamflow for Mpologoma River catchment in the near future (2021 – 2040) 

1.4. Hypotheses 

1.  Stream flow of river Mpologoma significantly increases in the MAM compared to the 

SON 

2. Rainfall has a significant relationship with stream flow of river Mpologoma irrespective 

of the season 

3. Streamflow for River Mpologoma will decline significantly due to climate change in 

the near future (2021 – 2040) 

1.5. Significance of the study 

The findings of this study will enable the stakeholders in the River Mpologoma catchment to 

Plan ahead in terms of water availability for the different water users in the near future. This is 

very important since many people living around the catchment depend on it for livelihood 

support especially farmers NDP 111. The results from the study will enable the Ministry of 

Water and Environment in Uganda to design policies that strengthen the water management 

processes and help conserve similar water resources. Such policies will ensure that the 

communities in the sub-catchment attain maximum benefits from utilizing the available natural 

resources in a more sustainable manner accruing to Sustainable Development Goal 6(SDG). 

At the end of this research, the findings will be published in a research journal which will 

benefit researchers and academicians as the study will be used as reference and as a benchmark 

for further studies to be carried out on similar catchments. 
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1.6. Scope of the study 

This study concentrated on how Mpologoma River catchment has responded and will respond 

to variability in rainfall in regard to magnitude and duration of its flow regimes. Two climate 

scenarios were considered while modeling future streamflow namely RCP 4.5 and RCP 8.5. 

(2021-2040) the study did not take into account other climatic factors besides rainfall such as 

temperature and evapotranspiration. Neither did it investigate the impact of non-climatic 

factors on streamflow which include socio-economic (human) activities usually manifested in 

form of changes in land use/cover, conservation, among others. The study only looked at the 

effect of rainfall on water quantity in the catchment and not water quality; and dealt only with 

streamflow and no other surface flows such as runoff. In terms of geographical scope, the study 

covered Mpologoma, a sub-catchment found within the Lake Kyoga basin.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Introduction 

This chapter provides insight of the status-quo of water resources in Uganda with focus on 

Mpologoma catchment. It also reviews past studies on spatial-temporal variations in climatic 

parameters especially rainfall and how such variations affect streamflow patterns. 

2.2. General overview of water resources in Uganda 

Uganda covers a total area of 241,038 square km, of which 18% is open water and wetlands. 

The area is spread across the equator between latitude 100 30’ South and 100 40’ North, and 

longitude 290 30’ West and 290 35’ East. Most areas in the country lie at an average altitude of 

1,200 m above sea level with the Albert Nile area having an altitude of 620 m at least and an 

altitude of 5,110 m above sea level at most at the Mt. Rwenzori peak. Uganda possesses 

plentiful water resources and one of them is the second largest freshwater lake in the world 

(Lake Victoria) among others. Major rivers include the Nile which is the longest river in the 

world, Rwizi, Katonga, Kafu, Mpologoma, Malaba and Aswa (MWE, 2013). Most parts of 

Uganda lie within the upper river basin of the White Nile except a small part located in the 

northeast which drains into Kenya’s Lake Turkana basin. The country is partitioned into eight 

major sub-basins that drain into the Nile and these are: L. Victoria, L. Kyoga, R. Kafu, L. 

George and Edward, L. Albert, R. Aswa, Albert Nile and Kidepo Valley. 

According to Taylor et al. (2014) current water supply in Uganda is on average sufficient to 

meet total demand in most months of the year although there were some periods when unmet 

demand may be as high as 5% of total demand. These suggestions were made after estimating 

water demand by sector (households, industry, livestock and agriculture) in eight watersheds 

in Uganda from 1981-2010. In the future, however, projections indicate a much greater level 

of demand and some potential reductions in supply. Total demand is expected to increase from 

408 million cubic meters a year in 2010 to 3,963 million cubic meters in 2050. Total unmet 

demand will then rise from 3.7 million cubic meters to 1,651 million cubic meters in this period. 

In most months water shortages are predicted to be enormous. 

Mpologoma is a sub-catchment of the Kyoga basin that is located in the Upper Nile and is 

mainly characterized by inter-annual and inter decadal variation in precipitation. The most 

significant tributary flow to the basin is mainly from the Mt. Elgon ranges (in the Eastern parts 
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on the borders of Uganda and Kenya). The Kyoga basin faces high evapotranspiration from the 

swamp vegetation. Water availability in the basin is mainly important for agriculture, fishing, 

municipal purposes and many other uses. Water availability is highly influenced by climate 

variability and climate change presents many challenges for the basin. Human activities in the 

catchment have increased over the past century and are expected to grow even more rapidly in 

the future, hence, water management will become even more important with a changing climate 

(Kigobe & Griensven, 2010). 

Climate change and variability are already affecting the availability of water in Uganda and 

this is expected to increase over time. In recent years the country has been subjected to the La 

Niña drought event of 1998-2000 and the El Niño wet phase and floods event of 1997-1998, 

both of which caused considerable loss and disruption. The sources of the effects include 

changes in precipitation patterns, increased frequency of floods and droughts, and changes in 

evaporation due to higher temperatures. All of these affect the amount of water available, both 

directly and through its impacts on infrastructure related to water. At the same time the country 

is facing major socioeconomic change, especially population growth and increasing incomes, 

that is resulting in an increased demand for water in the country. Since water is a key base for 

almost all human activity the consequences of these changes are very significant throughout 

the economy and society (Taylor et al., 2014). 

2.3. Climate trends and rainfall patterns in Uganda 

Uganda’s rainfall exhibits a high degree of spatial and temporal variability. This variation is 

mainly controlled by the El Niño-Southern Oscillation (ENSO), the movement of the Inter-

tropical Convergence Zone (ITCZ), Quasi-Biennial Oscillation (QBO) and the Indian Ocean 

Dipole (IOD). The average annual rainfall distribution in Uganda varies from 900mm in the 

north-eastern semi-arid areas of Kotido to 2000 mm on Ssese Islands in Lake Victoria. The two 

main rainfall regimes experienced in Uganda are unimodal and bimodal. The bimodal regime 

is observed over majority of the country with the first wet season occurring between March, 

April and May (MAM), while the second occurs between September, October and November 

(SON). The dry seasons generally occur from June, July to August (JJA) and December to 

February (DJF). The unimodal` pattern on the other hand is predominant in areas far north of 

Uganda where the two wet seasons merge forming one long wet season from April-September 

(Phillips & McIntyre, 2000). The spatial variation is also credited to the complex topography, 

vegetation and existence of large inland water bodies such as Lake Victoria, Lake Kyoga, 

among others which modulate the local climate. Generally, rainfall tends to decrease with the 
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distance from the lake. The effect of the local topography is such that the highest rainfall is 

received in mountainous areas. The highest annual maximum rainfall is experienced around 

the lakeshore and on the slopes of Mt. Elgon (WWAP & DWD, 2006). 

Uganda experiences pleasantly cool temperature with a long-term mean of 210 C. Over a year, 

mean temperatures range from a minimum of 150 C in July to a maximum of 300 C in February. 

However, following the warming of the African continent by 0.50 C in the past century (since 

1988), some adverse impacts of temperature rise such as melting of ice and glaciers on 

mountain-tops has been observed in Uganda. The Rwenzori highlands are one of a few of 

permanently ice-capped mountains in Africa. Recent studies have shown that the glaciers and 

ice fields on this mountain have decreased markedly both in number and size and that the rate 

of shrinkage has been greatest after 1990 (WWAP & DWD, 2006). 

Uganda’s climate is naturally variable and susceptible to flood and drought events which have 

had negative socio-economic impacts in the past. Human induced climate change is likely to 

increase average temperatures in Uganda by up to 1.5  ºC in the next 20 years and by up to 4.3 

ºC by the 2080s (NEMA, 2010). Such rates of increase are unprecedented. Changes in rainfall 

patterns and total annual rainfall amounts are also expected but these are less certain than 

changes in temperature. The climate of Uganda may become wetter on average and the increase 

in rainfall may be unevenly distributed and occur as more extreme or more frequent periods of 

intense rainfall. Regardless of changes in rainfall, changes in temperature are likely to have 

significant implications for water resources, food security, natural resource management, 

human health, settlements and infrastructure. In Uganda, as for the rest of the world, there are 

likely to be changes in the frequency or severity of extreme climate events, such as heat waves, 

droughts, floods and storms (Environmental Alert, 2010). 

Current scientific evidence suggests that climate change is occurring and will continue into the 

unforeseeable future. Impacts can already be observed in terms of changes  in the quality and 

quantity of drinking water (MWE, 2016). Climate change models predict an overall warming 

of the earth, increased evaporation, shifts in precipitation patterns, rising sea levels, and 

increasing extreme events such as floods, droughts, and heat waves (Arnell & Gosling, 2013). 

Over the past century, the global average surface temperature has risen by 0.7 °C, with warmest 

year being 2008. Projections suggest that over the next 100 years, temperature in the drier 

subtropical regions of Africa will increase by a greater amount than in the moister tropics. 

Northern and southern Africa will become warmer by as much as 4 °C or more and 
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precipitation will fall by 15% or more, while rainfall is likely to increase in eastern Africa and 

parts of central Africa. 

According to Serdeczny et al. (2017), the repercussions of climate change will be felt in various 

ways throughout both natural and human systems in Sub-Saharan Africa. Climate change 

projections for this region point towards a warming trend, particularly in the inland subtropics. 

The anticipated impacts include frequent occurrence of extreme heat events, increasing aridity, 

and changes in rainfall with a particularly pronounced decline in southern Africa and an 

increase in East Africa with a higher risk of flooding. The region could also experience as much 

as one meter of sea-level rise by the end of this century under a 4 0C warming scenario. 

Particularly vulnerable to these changes are the rain fed agricultural systems on which the 

livelihoods of a large proportion of the region’s population depend. 

Down-scaled Global Circulation Models (GCMs) suggest that mean temperatures will rise by 

0.3 to 0.5°C per decade in Uganda whereas annual rainfall is projected to increase by 10-20% 

during the 21st century. The seasonality of rainfall is also likely to change in the future. The 

highest percentage increase in rainfall is projected for December, January and February, which 

is historically the driest season for many parts of Uganda. This indicates that the current wet 

season from March April to May (known as the “long rains” in Southern and Central Uganda) 

may shift forwards in time or the September to November rains, known as the “short rains” 

may extend longer. It must be emphasized that there is already considerable variability in 

seasonal rainfall totals, much of which is linked to ENSO (Crop et al., 2012). 

Uganda has experienced frequent flooding and droughts, which have demonstrated the 

country’s vulnerability to climate variability. Prolonged and severe droughts (as in 1999, 2000 

and 2004-05) led to water shortages, the loss of livestock, food insecurity and increased food 

prices. Water levels in the lakes fell and the Nile flow declined, reducing the generation of 

hydropower that resulted into power shortages. Recent observations suggest that increased 

variability in rainfall patterns has brought shorter wet periods and heavier, more violent rains 

with extreme events like landslides becoming more frequent (Bhatt & Mall, 2015). The impacts 

of climate changes will affect all human activities, affecting the conditions in which people 

live and those livelihoods that depend directly on water, notably agriculture but also fisheries 

and industry. While it is projected that average rainfall may increase, the main concern is the 

impact of extreme events such as floods and droughts which are expected to increase in 

frequency and severity (MWE, 2013). 



11 
 

In a study carried out to determine the extent of rainfall trends and variability in Eastern 

Uganda, Kansiime, Wambugu, & Shisanya (2013) applied trend analysis in form of linear 

regression on observed rainfall data for the period 1971-2010.  The Coefficient of Variation 

and ANOVA techniques were used to study variability. Their findings showed that for areas 

around L. Victoria and L. Kyoga basins, significant negative trends were eminent in the MAM 

rainfall while the SON rainfall showed rising trends. However, areas surrounding Mt. Elgon 

were found to have experienced positive significant trends in volume of rainfall received during 

both MAM and SON seasons. They also found significant within and between season 

variations for L. Victoria and less significant variations for Mt. Elgon and L. Kyoga agro-

ecologies although Mt. Elgon exhibited high rainfall variability for SON. 

2.4. Relationship between stream flow and rainfall 

Observational records and climate projections provide abundant evidence that freshwater 

resources are vulnerable and have the potential to be strongly impacted by climate change with 

wide-ranging consequences for human societies and ecosystems. Observed warming over 

several decades has been linked to changes in the large-scale hydrological cycle such as: 

increasing atmospheric water vapor content; changing precipitation patterns, intensity and 

extremes; reduced snow cover and widespread melting of ice; and changes in soil moisture and 

runoff. Precipitation changes show substantial spatial and inter-decadal variability. Over the 

20th century, precipitation has mostly increased over land in high northern latitudes, while 

decreases have dominated from 10° S to 30 °N since the 1970s. The frequency of heavy 

precipitation events has increased over most areas. Globally, the area of land classified as very 

dry has more than doubled since the 1970s (Bates et al., 2008). 

Warmer temperatures are predicted to reduce stream and river flows, change timing of runoff 

and increase the likelihood of salt water intrusion along coasts (Water Research Foundation, 

2016, Emami & Koch, 2015). For instance, observed warming has exhibited and linked itself 

to large scale hydrological cycle changes in terms of increasing atmospheric water vapor 

content, precipitation pattern changes, intensity and extremes, soil moisture changes among 

others. Further still, there will be changes in both the quantity and quality of water due to 

climate change. This will increase the level of vulnerability of the poor rural farmers, food 

insecurity, increased runoff in some areas will be counterbalanced with variability in 

precipitation and seasonal runoff in all aspects water benefits (IPCC, 2008).  
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By the middle of the 21st century, annual average river runoff and water availability are 

projected to increase as a result of climate change at high latitudes and in some wet tropical 

areas, and decrease over some dry regions at mid-latitudes and in the dry tropics. Higher water 

temperatures and changes in extremes, including floods and droughts, are projected to affect 

water quality and exacerbate many forms of water pollution. Globally, the negative impacts of 

future climate change on freshwater systems are expected to outweigh the benefits. Changes in 

river flows, as well as lake and wetland levels, due to climate change depend primarily on 

changes in the volume and timing of precipitation and, crucially, whether precipitation falls as 

snow or rain. Changes in evaporation also affect river flows (Bates et al., 2008). 

A recent study by Tumusiime & Ageet (2018) assessed the impacts of climate change on hydro-

meteorological ecosystem services and water stress in Lake Kyoga Catchment. They analysed 

trends in meteorological and hydrological observations for the baseline period 1959-2016 and 

thereafter used the Climate Predictability Tool to project water levels under two climate future 

scenarios. They also applied the correlation percentage change to estimate the rate of change 

of flow and water levels under a changing climate. Their findings showed that climate change 

has already affected water resources in L. Kyoga catchment with continuous reduction in water 

levels by  6%. Their results also revealed that climate change is likely to increase precipitation 

received during the wet seasons by 10-20% resulting in higher stream flow and a reduction of 

20-40% for precipitation during the dry seasons. 

Arora et al. (2014) carried out a study on correlations of streamflow and climatic variables for 

a large glacierized Himalayan basin. They used data for eight continuous glacier seasons (2000-

2011) to investigate correlations, lag cross correlations and multiple regression analysis 

between daily mean discharge, daily mean temperature and daily mean rainfall. Their results 

indicate that discharge and temperature are highly auto-correlated and that daily discharge was 

dependent on present temperature, present rainfall and the previous day’s discharge. They 

concluded that regression equation can be used for forecasting discharge once the input 

variables namely rainfall and temperature are available. 

Liu et al. (2013) analyzed changes in the relationship between precipitation and streamflow in 

the Yiluo River in China. They used annual precipitation and  annual streamflow for the period 

1960 to 2006 and Mann–Kendall and Pettitt methods to analyze trends and detect change points 

in the hydro-climatic variables respectively. Their findings revealed that both annual 

precipitation and streamflow decreased significantly over the study period and that a change 
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point was detected in annual streamflow series in 1986 after which streamflow decreased more 

dramatically than precipitation. They attributed the non-stationary relationship between annual 

precipitation and streamflow after 1986 to human activities, such as water diversion and land 

use/cover change which accounted for the substantial decrease in streamflow. 

In a study to assess the impact of climate change on surface water resources of Wular lake in 

India, Hameed et al. (2017) applied trend analysis accompanied by 5-year moving averages 

and Mann-Kendall's test on annual discharge, temperature and precipitation over 21 historical 

years. They used Kendall correlation test to investigate the strength of pairwise relationships 

between the variables. They noted an increasing trend for temperature particularly after 1993, 

while precipitation and dicharge showed negative but insignificant trends. A strong positive 

correlation was found between annual rainfall and mean annual discharge. Conversely, a 

negative but weak relationship was noted between annual temperature and annual discharge. 

Gül et al. (2010) assessed regional climate change impacts on river flows and environmental 

flow requirements for a lowland catchment in Denmark. They used a coupling approach where 

the hydrological model MIKE SHE and hydraulic model MIKE 11 were combined to simulate 

streamflows and groundwater head levels in a dynamic system. Their results show that whereas 

scenario estimates mostly show clear deviations from the observed averages, the response of 

river flows to the changes in climate events varies between the different GCMs. They found 

that a typical delayed response of flows to any immediate monthly increase or decrease in 

precipitation was obvious for all the scenario cases. 

Kamruzzaman et al. (2014) evaluated the short-term relationship between rainfall and stream-

flows in Southern Australia over the period 1990 to 2010. They used data from three rivers, 

namely Broughton, Torrance and Wakefield. They presented the relationship between rainfall 

and streamflow using correlations and lagged correlations, and also run deterministic 

regression based response model to detect linear, quadratic and polynomial trends, while 

controlling for seasonality effects. Their study showed that lagged rainfall was the best 

predictor of streamflow with a surge in rainfall significantly leading to increased streamflow. 

In addition, they also found out that predicted streamflow was more influenced by the previous 

few days’ streamflows as compared to the entire previous period of stream flow. 

A study by Karlsson et al. (2014) investigated historical trends in precipitation and stream 

discharge at the Skjern River catchment in western Denmark using 133 years of data for 

precipitation, temperature, evapotranspiration and discharge. They examined the degree of 
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change in discharge relative to change in climatic variables using the non-parametric Mann–

Kendall test and the hydrological model NedborAfstromnings (NAM). They found that over 

the study area, a 26% change in precipitation and a 1.40C temperature change were evident 

thus demonstrating high non-stationarity of the climatic setting. Their study noted that these 

changes contributed to a 52% increase in river discharge. They concluded that hydrological 

models cannot be expected to predict climate change impacts on discharge as accurately in the 

future, compared to the performance under present conditions. 

Ficklin et al. (2016) studied the impacts of recent climate change on trends in baseflow and 

stormflow in United States watersheds. Using daily streamflow (1980 to 2010), they derived 

baseflow and stormflow for 674 sites in the United States. They analyzed the associations of 

these attributes with precipitation, potential evapotranspiration, and maximum/minimum 

temperature at monthly and seasonal time scales using Mann-Kendall non-parametric trend 

test. Their findings reveal that spatial variation in trends of natural baseflow and stormflow 

were largely as a result of recent trends in climate as an increase in precipitation led to an 

increase in baseflow or stormflow and vice versa. They observed consistent negative and 

positive trends in baseflow and stormflow respectively for the northeastern and southwestern 

United States. They further noted that whereas baseflow increased notably during fall and 

winter in the northeast, stormflow decreased during all seasons in the southwest and that trends 

elsewhere and at other times of the year were more variable but still associated with changes 

in climate. 

Birsan et al. (2005) analyzed trends in annual and seasonal streamflow records from 48 

watersheds in Switzerland. They applied the Mann–Kendall test on three time periods (1931–

2000, 1961–2000, 1971–2000). They correlated the identified trends in streamflow with 

changes in precipitation and air temperature and together with watershed attributes using 

Spearman’s correlation. Their study found rising trends in annual runoff, seasonal runoff, 

winter maximum streamflow and in spring and autumn moderate and low flows. However, 

their study revealed that changes in precipitation were not sufficient to explain the observed 

trends in streamflow. They noted that streamflow trends were rather strongly associated with 

basin properties such as elevation, glacier and rock coverage and soil depth. 

In their study on the impact of climate change on global river flow, Falloon & Betts (2006) 

used the the Hadley Centre General Circulation Model to predict changes in global river flow 

under the IPCC SRES A1B and A2 scenarios. Their findings indicate that global total river 
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flow will increase by 4–8% during the 2071–2100 period relative to 1961–1990, but with some 

notable regional differences, such as, large increases in river flow in boreal regions and western 

Africa, and large decreases for southern Europe and North Africa. They also note that changes 

in the seasonality of river flow may occur, such as earlier peaks in spring runoff in boreal rivers 

due to earlier snow melt. Their simulations generally reveal large increases in monthly 

maximum flow and decreases in monthly minimum flow, although the increases in the former 

might be larger. They conclude that climate change is likely to increase the occurrence of both 

high and low flows, although the increased peak flows could be dominant. 

Zhao et al. (2014) conducted a study to quantify the impact of climate variability and human 

activities on streamflow in the middle reaches of the Yellow River basin in China. They applied 

Mann–Kendall test and Pettitt’s test to characterize the trends and abrupt changes of hydro-

climatic variables as well as streamflow data taken over the period from the 1950s to 2010. 

They observed significant decreases in annual streamflow and precipitation whereas 

temperature showed positive trends. Furthermore, they used Budyko’s curve (a simple water 

balance model) and linear regression to evaluate the potential impacts of climate variability 

and human activities on mean annual streamflow. Their findings show that climate variability 

had a greater effect on the streamflow reduction in the major rivers whereas human activities 

such as soil and water conservation projects, operation of dams and reservoirs, and water 

consumption, accounted for more of the streamflow declines in other tributaries. 

The relationship of Streamflow-Precipitation-Temperature in the Yellow River Basin of China 

was studied by Yang, Yan, & Liu (2012). They used Mann-Kendall method to analyze trends 

in natural runoff and observed streamflow, as well as monthly precipitation and air temperature 

of the basin for the period 1961-2000. They applied the Geostatistical Analyst module of 

ArcGIS 9.3 to plot the quantitative Streamflow-precipitation-temperature relations. Besides 

detecting a change in natural streamflow in 1991, their findings revealed notable declines in 

precipitation and increments in temperature for majority of stations in the basin. Their findings 

further suggested that streamflow responded differently to various extents of precipitation and 

air temperature and that generally, the index of precipitation elasticity to streamflow was 

estimated to be 1.95 over the period. They concluded that both precipitation decrease and 

temperature increase were responsible for the streamflow decline of the Yellow River. 

Li et al., (2007) conducted a study to assess the impact of climate variability and human 

activities on streamflow from the Wuding River basin in China. They employed the non-
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parametric Mann–Kendall–Sneyers rank test to detect trends/changes in annual streamflow for 

the period of 1961 to 1997 after which they measured the sensitivity of annual streamflow to 

precipitation and potential evaporation and constructed relationships between annual 

streamflow and precipitation. Their findings revealed a significant downward trend in annual 

streamflow with an abrupt change detected in 1972. Annual streamflow reduced by 42% 

between 1972 and 1997 while flood-season streamflow declined by 49%. Their results also 

showed that streamflow regime of the catchment reduced by 31% for most percentile flows 

except for low flows which recorded a 57% reduction. Overall, changes in precipitation and 

potential evaporation accounted for 13% reduction in total mean annual streamflow whereas 

soil conservation measures accounted for the remaining 87%. 

The impacts of climate change on hydrological regime and water resources management of the 

Koshi River Basin in Nepal were investigated by Devkota & Gyawali (2015). They used two 

Regional Climate Models (RCMs) and the calibrated SWAT model to simulate future 

climatological (A1B Scenario) and hydrological impacts respectively. Their results on future 

projections showed a decrease in the long term monthly flow by more than 30% in the drier 

months and an increase by more than 25% in the peak flow months when compared to the 

baseline values. These results suggest a shift of the peak monthly flow under projected future 

conditions. In general, their findings relayed that climate change was less likely to pose a major 

threat to average water availability although temporal flow variations were expected to increase 

in the future. They noted that the magnitude of projected flow for given return periods, 

however, strongly depends on the climate model considered. They concluded by stating that 

flow decreases during the wet season and increases during the peak flow season. 

Kibria et al. (2016) analyzed streamflow trends and responses to climate variability and land 

cover change in South Dakota in the United States. They evaluated trends in high, moderate, 

and low streamflow as well as observed rainfall data for selected watersheds for the period 

1951–2013 using a modified Mann-Kendall test. In addition, they applied the elasticity 

coefficient to examine the sensitivity of streamflow to variation in rainfall and land cover. Their 

results show significant increasing trends in annual streamflow for most of the gauging stations. 

They found that about half of the streams exhibited significant positive trends in low flow (1-

day minimum and 7-day minimum flow) and moderate flow (median daily and daily average 

flow) conditions compared to peak flow (1-day maximum flow and 7-day maximum flow) 

conditions. They also observed that half of the rainfall stations showed slight increasing trends 

in annual rainfall. Their findings from elasticity analysis revealed that streamflow was highly 
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influenced by rainfall with a 10% increase in annual rainfall resulting in 11%–30% rise in 

annual streamflow for most streams. 

Aich et al. (2014) studied the impacts of climate change on streamflow in four large African 

river basins Niger, Upper Blue Nile, Oubangui and Limpopo. They compared trends in mean 

discharges, seasonality and hydrological extremes for the 21st century. They employed the Eco-

hydrological model SWIM (Soil and Water Integrated Model) for streamflow measurements, 

and an ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) models for 

climate impact assessment in Africa using Representative Concentration Pathways (RCPs) 

scenarios of 2.6 and 8.5. They found evidence of climate change impact for mean discharges 

and also for extremes in high and low flows. With regard to future changes in quantity and 

seasonality of streamflow, they reported that the most extreme changes in discharge were likely 

to happen in the Upper Blue Nile catchment. However, they noted an unclear direction and 

magnitude of trend for the Niger and Limpopo basins as well as insignificant impacts on the 

Oubangui River. Overall, they concluded that there was a tendency for increased streamflows 

in all river basins with the exception of Oubangui. 

Taye, Ntegeka, Ogiramoi, & Willems (2011) investigated the potential impact of climate 

change on hydrological extremes in two source regions of the Nile River Basin, namely Nyando 

River and Lake Tana catchments. They used 17 GCMs to simulate rainfall and potential 

evapotranspiration under two future climate change (emission) scenarios A1B and B1 after 

which two conceptual hydrological models VHM (Veralgemeend Conceptueel Hydrologisch) 

and NAM were calibrated and used for the impact assessment. Their results revealed increasing 

mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend 

was observed for Lake Tana catchment for mean volumes and high/low flows. They however 

, noted that the hydrological models for Lake Tana catchment performed better in simulating 

the hydrological regimes than for Nyando therefore inducing a difference in the reliability of 

the extreme future projections for both catchments. 

Adem et al. (2016) examined basin-level impact of climate change on streamflow in the upper 

Gilgel Abay catchment of the Blue Nile basin in Ethiopia. By taking 1961 to 1990 as a baseline 

period, they applied a statistically down scaled global climate model HadCM3 to study future 

impacts of climate change for the periods of 2020s, 2050s and 2080s based on A2 (medium–

high) and B2 (medium–low) emission scenarios. They also performed an impact assessment 

on streamflow using the soil and water assessment tool (SWAT) hydrological model. Their 
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results predicted a systematic increase in precipitation and temperature for all future time 

periods for both A2 and B2 scenarios. These increases in climate variables was expected to 

increase mean annual streamflow by 7.1, 9.7, and 10.1 percent for A2 scenario and by 6.8, 7.9, 

and 6.4 percent for B2 scenario for 2020s, 2050s, and 2080s, respectively. 

Ma et al. (2010) conducted a study on the impact of climate variability and human activity on 

streamflow decrease in the Miyun Reservoir catchment in China using historical records of 

1953-2005. Climate variability was expressed in terms of changes in precipitation and 

temperature whereas human activity was estimated as direct withdrawal (abstraction) of water 

from the river and indirect impact due to man-made changes in land use and vegetation in the 

upstream of the reservoir. They used a geomorphology-based hydrological model and a climate 

elasticity model to conduct a quantitative assessment of the impact of the two factors on the 

inflow into the reservoir. It was found that annual streamflow in the reservoir had decreased 

significantly over time. Their results showed that climate impact was accountable for slightly 

more than half of the decrease in reservoir inflow. Their findings also revealed that direct and 

indirect impact of human activity accounted for 23% and 18% of the decrease in reservoir 

inflow respectively. 

In a study on the implication of climate change and variability on the river flow within the 

traditional irrigation farming system in Iringa region in Tanzania, (Kassian et al., 2017) 

employed a mixed study approach. They collected primary data from 189 farmers through 

questionnaires and also obtained secondary data on monthly rainfall and river flow for the 

period 1997-2014. They applied Mann–Kendall’s test and linear regression to analyze long-

term annual trends of rainfall and river flow. They found a significant decreasing pattern in 

historical rainfall and a slight decline in river flow during the past 17 years. Their study relayed 

that a decline in river flow, combined with rainfall fluctuations, forced farmers to employ 

various adaptation strategies such as increasing the depth of water wells in the fields and 

diverting the river through water channels to the fields. 

Kigobe & Griensven (2010), investigated the hydrological response of Mpologoma basin 

within the upper Nile to changes in climate. They used statistical downscaling techniques for 

climate projections with particular emphasis on rainfall simulation for the Lake Kyoga basin 

while employing Generalised Linear Models (GLMs). They also used the SWAT semi-

distributed hydrological model to examine sensitivity of streamflow to changes in climate. 

They observed that having corrected for bias, simulations from the model indicate major shifts 
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in hydrological regimes, with a tendency of significantly higher monthly average flows and 

higher evapotranspiration rates which may subsequently lead to variation in the timing of 

floods and droughts. Their findings generally suggest that a warmer climate would lead to a 

basin-wide increase in rainfall and subsequent increase in streamflows for the Mpologoma 

basin in the near future (2050s) and far future (2080s). They also did not consider stream flow 

percentiles and quartiles in their study.  

2.5. Summary of literature 

Various studies have been reviewed empirically of which most assessed trends in river flow 

and climatic factors such as precipitation and temperature. They further examined the impact 

of climatic factors on river discharge both at catchment and basin scales. Majority of these 

studies employed hydrological and/or statistical modelling techniques. Examples of statistical 

methods used were: trend analysis using Mann–Kendall and Pettitt tests; correlations, lagged 

cross correlations, regression analysis, generalised linear models and elasticity coefficient to 

investigate the relationship between streamflow and rainfall. Hydrological models used 

included SWAT, SWIM, NAM, MIKE, among others which were all driven by scenarios based 

on climate model simulations. Generally, these studies focused vastly on large scale basins and 

catchments where they reported mixed conclusions. Some reported statistically significant 

links between stream flow and climatic variables (Tumusiime and Ageet, 2018; Arora et al., 

2014; Hameed et al., 2017; Karlsson et al., 2014; Kibria et al., 2016; Ma et al., 2010). Other 

studies however, found no association between river discharge and climatic predictors (Birsan 

et al., 2005; Devkota and Gyawali, 2015). Further still, some studies projected declines in 

stream flow in the future (IPCC, 2008; Kigobe and Griensven, 2010) whereas others predicted 

significant rise in streamflow under future climate scenarios (Bates et al., 2008; Taye et al., 

2011; Adem et al., 2016).  



20 
 

CHAPTER THREE 

 METHODOLOGY 

3.1. Study area 

Mpologoma River catchment (Figure 3.1) is part of Lake Kyoga Water Management Zone 

(basin) which is one of the eight major surface water basin delineations for Uganda. The 

catchment is of intermediate type and covers an area of about 8,996 square kilometeres both 

land and water. The catchment is characterized by the presence of Mount Elgon (4,321 masl) 

at the extreme northeast corner of the catchment, where the steepest slopes are found and a few 

extinct volcanoes and ridges along its southern and eastern rim at lower elevations along the 

border with Kenya. The altitude of the remainder of the catchment is betw een 1,033 m and 

1,150 m above sea level, with the latter being the mean altitude of Lake Kyoga. Most wetlands 

in the catchment are located in this relatively flat area. The main rivers in the Mpologoma 

catchment are: Rivers Manafwa and Namatala flowing from the North-Eastern side of the 

catchment; River Malaba flowing from the Southern slopes of Mount Elgon; and Rivers 

Kimbimba and Naeombwa flowing from the south to the lower part of the catchment (Mugume 

et al, 2017). 

 

Figure 3.1: Location map of Mpologoma River catchment 
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The catchment is located in Eastern Uganda, between 0.53 and 1.17 degrees North and between 

33.59 and 33.75 degrees East and drains over 10 districts. Most of the catchment is classified 

as “dry sub-humid” and is characterized by moderate water surplus during the rainy seasons, 

while water deficits occur during the dry season (MWE, 2013). Rainfall distribution in the 

region is bimodal, allowing two cropping seasons annually. There is a first rainy season from 

March, April to May (MAM) and a second one from September, October to November (SON). 

On average, the catchment receives about 1,472 mm of rainfall annually, with a runoff and 

evapotranspiration of 64 m3/s and 1,354 mm respectively. Rainfed agriculture and livestock 

grazing are the most wide spread activities in the catchment, covering half of the total land 

area. Most cultivation is done by smallholders of whom a large majority are rural and directly 

dependent on agriculture. Rice is the most important crop in the wetlands although maize is 

also coming up as a key crop especially in Butaleja, Namutumba and Iganga districts. Only 

two formal irrigation schemes, namely Kimbimba and Doho, are currently operating in the 

catchment albeit informal small-scale irrigation is also rising (Verdonck & Michel, 2016). 

3.2. Source of data 

Daily rainfall satellite observations for Butaleja, Bududa, Tororo and Mbale meteorological 

stations (Table 3.1) spanning the period 1981 to 2015 were obtained from open data portal of 

National Aeronautics and Space Administration (NASA) under the Prediction Of Worldwide 

Energy Resources (POWER) project (https://power.larc.nasa.gov/data-access-viewer/). The 

data were downloaded at a spatial resolution of 0.5° latitude x 0.5° longitude. The rainfall 

observations are mean daily values of the long-term climatologically averaged estimates 

derived from the Global Modelling and Assimilation Office (GMAO) Modern Era 

Retrospective-Analysis for Research and Applications (MERRA-2) assimilation model 

products (Rienecker et al., 2011). These satellite and model-based products have been shown 

to be accurate enough to provide reliable meteorological resource data over regions where 

surface measurements are sparse or non-existent (Ashouri et al., 2016). 

 

 

 

https://power.larc.nasa.gov/data-access-viewer/
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Table 3.1: Hydrological and meteorological stations used in the study 

Station type Name (ID) of station Longitude 

(0) 

Latitude 

(0) 

Elevation 

(m) 

Hydrological R. Mpologoma at Budumba 

(82217) 

33.790278 0.826944 1062 

R. Manafwa at Mbale - Tororo 

Rd (82212) 

34.157778 0.936944 1122 

Meteorological Tororo met. station (89340190) 34.166667 0.683333 1176 

Mbale forest station (88340530) 34.166667 1.050000 1121 

Butaleja prison (89330280) 33.966667 0.917000 1087 

Bududa agricultural station 

(88340560) 

34.333333 1.017000 1297 

Daily average flow data for the same time period for R. Mpologoma and R. Manafwa gauging 

stations (Table 3.1) were acquired from the Ministry of Water and Environment (MWE) 

database through the Directorate of Water Resources Management (DWRM). The stations 

above were selected to represent the catchment as they had less than 10% missing data, a 

criteria recommended by World Meteorological Authority (WMO) for hydro-meteorological 

studies. 

3.3. Definition of variables 

Stream flow, also known as discharge is defined as water flow within a river channel. In this 

study, three characteristics of stream flow were investigated namely: low flow, average flow 

and peak flow. Low flow is the water in a stream during prolonged dry weather, or the smallest 

sustained average daily flow rate or volume with time (Aseffa &Moges 2018) (WMO, 2010) 

whereas peak flow is maximum discharge during the period of runoff caused by heavy rainfall 

or flood event (Bamutaze et al., 2014). Average flow is the mean flow of an individual period 

of a stream or river. Stream flow is known to vary at monthly, seasonal and annual scales 

(Ashraf et al., 2020). Stream flow in this study was defined in mainly in two ways, namely: 1) 

Exceedance percentiles that measure the magnitude of flow; 2) Flow duration statistics which 

estimate the duration of continuous low flow or peak flow events (Smakhtin, 2001; Stogner, 

2000). 

The notation for the former is Qp which is interpreted as the flow discharge that is possibly 

exceeded p-percent of the time and is calculated as the (100-p)th percentile of daily-mean 
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stream flow. The latter measure is denoted by Qn-stat, which is interpreted as n-day stream flow 

and is computed by averaging daily-mean discharge for n- consecutive days (where n can be 7 

or 14 or 30). Peak flows and low flows are used in assessing the risk of floods and droughts 

respectively (Aich et al., 2014). The most widely used low flow metrics are Q7min, Q90 and Q95. 

Peak flow on the other hand is usually expressed as Q7max, Q10 and Q5. The exceedance 

percentiles Q90 and Q10 are robust indicators for low flow and peak flow respectively. The 

values are interpreted as flow discharge which is exceeded 90% and 10% of the time 

respectively. Average flow is computed as Q50 which indicates the flow that is exceeded 50% 

of the time (Pyrce, 2004). The variables used in this study are listed in table 3.2 below. 

Table 3.2: Variables used in the study 

Regime Variable Definition 
Unit of 

measurement 

Low flow Q7min 7-day minimum flow duration m3s-1 

Q90 Low flow exceedance (90th) percentile m3s-1 

Peak flow Q7max 7-day maximum flow duration m3s-1 

Q10 Peak flow exceedance (10th) percentile m3s-1 

Average flow Q7mean 7-day mean flow duration m3s-1 

Q50 Median flow exceedance (50th) 

percentile 

m3s-1 

Rainfall R Total volume (amount) recorded Mm 

Definitions cited from Smakhtin (2001); Stogner (2000) , Pyrce (2004) 

3.4. Data preparation and processing 

3.4.1 Missing data estimation and homogeneity test 

Missing data presents a major challenge in hydro-meteorological studies. Filling missing gaps 

in data is needed to generate continuous time series that can be used in analyses. Some of the 

methods suggested in recent studies to overcome this challenge include the: Artificial Neural 

Networks (ANN) based on temporal and spatial auto-correlation (Wambua et al., 2016); 

interpolation, extrapolation and Inverse Distance Weighting (IDW) conventional techniques 

(Egeru et al., 2019; Jiang, Bamutaze, & Pilesjö, 2017); and a combination of regression and 

auto regressive modeling techniques that take advantage of neighboring stations (Tencaliec et 

al., 2015). 

In the current study, there were no gaps in rainfall time series. However, some gaps (<10%) 

were present in stream flow data. This study employed regression analysis technique in filling 

gaps in discharge data as suggested by Tencaliec et al., (2015). Pairwise correlations of daily 
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streamflow observations were computed between the target station (R. Mpologoma gauge) and 

the neighbouring station (R. Manafwa gauge) using periods where data were available for both 

stations. The two gauging stations are in close proximity and have similar topography, climate, 

soil type, geology, vegetation cover and land use (MWE, 2013). Having established evidence 

of a significant relationship, a least-squares linear regression model was fitted between the two 

stations’ streamflow observations. The fitted regression equation was then used to estimate 

missing discharge data for the target station by extrapolation method. 

Rainfall and discharge series were thereafter tested for homogeneity. Hydro-meteorological 

data often tend to exhibit trends or sudden jumps in the mean or variance over time as a result 

of changes in observing site, observing equipment and observing procedures hence the need to 

test for homogeneity (von Storch & Zwiers, 2003). Any conclusions drawn from analyzing 

such data may thus be biased. The study used Petit test (Pettit, 1979) to detect departures from 

homogeneity in the rainfall and discharge series. The test works by locating the time where a 

break or change point occurs in the series. 

3.4.2 Calculating average catchment rainfall 

In order to obtain rainfall that is representative of catchment-wide variations, it is necessary to 

compute the average catchment rainfall from the available stations. There are three 

conventional methods that are suggested for estimating catchment rainfall, namely: mean 

arithmetic, Thiessen polygon and isohyetal method. Studies have shown that these methods do 

not show much variation in estimating catchment rainfall and therefore non of the methods is 

superior over the others (Balany, 2011; Bhavani, 2013). This study applied the arithmetic mean 

method to compute average rainfall for R. Mpologoma catchment. Monthly rainfall totals of 

four stations were used, namely: Tororo, Mbale, Butaleja and Bududa. This method yields good 

results only when rainfall stations in the catchment area are uniformly distributed and the 

individual station rainfall values do not vary widely. It is given by the equation below 

𝑅𝑚 = {(𝑅1 + 𝑅2 + ⋯ + 𝑅𝑛)/𝑛}     .Eqn. (3.1) 

where Rm is the value of mean rainfall over the catchment area; R1, R2,….., Rn are the rainfall 

values at respective stations in a given period; n is number of stations within the catchment 

area. The computed average monthly rainfall was then used to obtain the seasonal and annual 

rainfall for the catchment across the study period. 
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3.5. Data analysis 

3.5.1 Determining the trend in streamflow for Mpologoma river catchment 

Streamflow characteristics namely low flow, average flow and peak flow were summarized 

using descriptive statistics, namely mean, median, standard deviation, coefficient of variation 

and skewness. Time series plots superimposed with trend lines were used to detect potential 

trends in the streamflow statistics (exceedance percentiles and flow duration). Trends in annual 

as well as seasonal streamflow statistics were evaluated for the period 1981–2015 using a non-

parametric test known as Mann-Kendall test. The test investigates the null hypothesis that the 

data come from a population with independent realizations and are identically distributed (no 

trend); against the alternative hypothesis that the data follow a monotonic trend. The Mann-

Kendall test statistic is given by: 

𝑆 = ∑ ∑ 𝑠𝑔𝑛( 𝑥𝑗
𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1 − 𝑥𝑘)      (3.2) 

Where n is the number of observations; xi and xk are sequential data values for the ith and kth 

observations respectively; sgn (ɵ) is the sign function which can be defined as follows: 

𝑠𝑔𝑛(𝜃) = {

1 𝑖𝑓 𝜃 > 0
0 𝑖𝑓 𝜃 = 0

−1 𝑖𝑓 𝜃 < 0
       (3.3) 

The Mann-Kendall test has two parameters that are important for trend detection. These are 

Kendall’s correlation coefficient (τ) and significance (p). The former shows the direction, 

strength/ magnitude of the trend where positive and negative values of τ indicate increasing 

and decreasing trend respectively; and the latter checks whether the trend is statistically 

significant (at α significance level) by comparing the p-value of the test statistic with α. 

3.5.2 Investigating the relationship between rainfall and streamflow in R. Mpologoma 

catchment 

Pairwise correlation was used to determine the strength of linear relationship between 

streamflow and rainfall by employing Pearson product-moment correlation as shown below: 

𝑟 =
∑ (𝑄𝑡−𝑄)(𝑅𝑡−𝑅)𝑇

𝑡=1

√∑ (𝑄𝑡−𝑄)2 ∑ (𝑅𝑡−𝑅)
2𝑇

𝑡=1
𝑇
𝑡=1

       (3.4) 

where r = sample correlation coefficient that measures the strength of relationship between 

streamflow and rainfall; Qt is discharge at time t with arithmetic mean 𝑄̅ and Rt is rainfall at 

time t with mean 𝑅̅; T is the length of time period under study. By letting the population 
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correlation to be denoted by ρ, the hypothesis that the correlation is significantly different from 

zero (H0: ρ = 0) was tested at α level of significance. The null hypothesis H0 was rejected on 

condition that the associated probability value is less than α. 

Streamflow statistics that correlated strongly with rainfall at bivariate level of analysis were 

transformed by taking their natural logarithms. Logarithmic transformation is known to remove 

trends and can be used to make highly skewed distributions less skewed. In other words, it 

helps in realizing normality and stationarity of variables and also generates the desired linearity 

in parameters. The practical advantage of the natural logarithm is that the interpretation of the 

regression coefficients is straightforward (Wooldridge, 2009). 

The study adopted regression analysis of time series data using Ordinary Least Squares (OLS) 

method of estimation. There are majorly two time series regression models commonly used in 

empirical time series analysis namely, static model and finite distributed lag (FDL) model. The 

static model measures contemporaneous relationship between two time series variables, i.e. the 

immediate effect on a given variable as a result of a change in the other at time t. In a FDL 

model, one or more predictor variables are allowed to affect the dependent with a lag. Both 

models are easily estimated by ordinary least squares (Wooldridge, 2009). 

In order to measure the static effect of rainfall on streamflow, the static regression model was 

applied on the transformed streamflow series. The static model was preferred over the FDL 

model since the latter is more applicable when modeling the relationship between daily rainfall 

and daily streamflow (Kamruzzaman et al., 2014). The resulting log-linear regression model is 

given by Equation 3.6 below. The individual coefficients measure the percentage change in 

streamflow per unit change in rainfall at a particular time. 

The static model relating original streamflow (Q) to rainfall (R) is 

𝑄𝑡 = 𝛽0 + 𝛽1𝑅𝑡 + 𝑢𝑡   𝑡 = 1,2, … , 𝑛  (3.5) 

The static model relating log-transformed streamflow to rainfall is 

𝑙𝑛( 𝑄𝑡) = 𝛽0 + 𝛽1𝑅𝑡 + 𝜀𝑡   𝑡 = 1,2, … , 𝑛 (3.6) 

Where Qt = Low flow or average flow or peak flow in m3/s at time t; Rt = Rainfall volume in 

mm at time t; β0 = intercept/constant; β1 = regression coefficient to be estimated; it measures 

the immediate percentage change in streamflow given a one-mm increase in rainfall at a given 

time t; ɛt = random error term. The model assumes that: ɛt is normally distributed with zero 

mean and constant variance; ɛt is uncorrelated with the explanatory variables; and that errors 
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in two different time periods are uncorrelated. These Classical Linear Model (CLM) 

assumptions were checked by running diagnostic tests on the estimated model residuals. 

3.5.3 Projection of streamflow for R. Mpologoma catchment in the near future 

Global Climate Models (GCMs), representing numerous atmospheric processes of the global 

climate system, are the main tools to estimate future climate patterns, and study likely changes 

in precipitation and temperature patterns. The spatial resolutions of GCMs range from 100–

500 km in grid size with a temporal resolution of daily, monthly or a longer time step. Hence, 

they are not able to represent local scale features such as, local topography, land use and clouds 

as their outputs are at a relatively coarse spatial resolution (Kaini et al., 2019). Hydrological 

assessment of climate change impacts requires climate data at finer spatial scales, which limits 

direct use of GCM outputs at catchment level. However, GCM outputs can be used to generate 

climate data at a finer scale to represent local climatic conditions through a process known as 

downscaling. 

The process used to reduce the scale of any information finer than 100 × 100 km2 scales 

(spatially) and shorter than monthly values is called downscaling, and it assumes that the local 

climate is a combination of local conditions and large-scale atmospheric features. Downscaling 

future climate data can be done statistically or dynamically (Attique, 2018). Dynamic 

techniques are based on the links between the climates of small and large scales whereas 

statistical downscaling methods use relationships between locally observed weather variables 

and atmospheric variables at large scale. The latter is usually preferred because it derives local 

scale data from larger scale using random and or deterministic functions (Salathe et al., 2008). 

There are many approaches that have been put forward by previous scholars for making climate 

projections with high resolution downscaled data. (Skamarock & Klemp, 2008) and (Done et 

al., 2004) advocate for the Weather Research and Forecasting (WRF) model in predicting 

numerical weather observations for short-term, mid-century and end-century time periods. The 

model simulates small-scale atmospheric weather at relatively higher resolution and has the 

ability to capture climate extremes, but its schemes have been found to underestimate seasonal 

rainfall amount over Uganda (Mugume et al., 2017). One other suggested approach is the 

Coordinated Regional Downscaling Experiment (CORDEX), a project of the World Climate 

Research Program aimed at coordinating the science and application of regional climate 

downscaling models and techniques (Giorgi & Gutowski, 2015) 



28 
 

Future rainfall data for four meteorological stations in R. Mpologoma catchment (Table 3.1) 

were extracted from the CORDEX program under two climate scenarios Representative 

Concentration Pathways 4.5 and RCP 8.5. CORDEX has been widely used by other researchers 

including (Oti et al., 2020; Negewo & Sarma, 2021; Onyutha, 2021) because it is statistically 

downscaled and bias corrected. CORDEX also provides an opportunity for generating high 

resolution climate projections which are important for assessment of future impacts of climate 

change (Kisembe et al., 2019). The output data were accessed via the Earth System Grid 

Federation (ESGF) web portals as an ensemble mean of simulations from ten Regional Climate 

Models (RCMs) (Table 3.3). They comprised of daily rainfall (mm/day) for the period 2021-

2040 at a spatial resolution of 0.44° x 0.44° that corresponds to a horizontal and vertical 

distance of about 50 square km. 

The RCMs within the CORDEX framework have been shown by Kisembe et al. (2019) to ably 

reproduce the space-time variability of inter-annual and seasonal rainfall over Uganda while 

properly capturing the unimodal and bimodal distributions of the annual cycle over the north 

and south parts of the country respectively. However, it was noted that the models 

underestimate the mean annual and MAM seasonal rainfall over the country, but overall, the 

ensemble mean of the CORDEX RCMs reproduces the rainfall climatology over Uganda with 

reasonable skill. 

Table 3.3: The list of RCMs used to simulate future rainfall 

Acronym Centre of research RCM 

BCCR-WRF331 Uni Research and the Bjerknes Centre for Climate 

Research 

WRF331 

CCCma-CanRCM4 Canadian Centre for Climate Modelling and Analysis 

(Canada) 

CanRCM4 

CLMcom-CCLM4-8-17 CLM community CCLM4-8-17 

CNRM-ALADIN52 Centre National de Recherches Météorologiques 

(France) 

ALADIN52 

DMI-HIRHAM5 Danmarks Meteorologiske Institut (Denmark) HIRHAM5 

KNMI-RACMO22T Koninklijk Nederlands Meteorologisch Instituut 

(Netherlands) 

RACMO22T 

MOHC-HadRM3P Met Office Hadley Centre (UK) HadRM3P 

MPI-CSC-REMO2009 Max Planck Institute (Germany) REMO2009 

SMHI-RCA4 Sveriges Meteorologiska och Hydrologiska Institut 

(Sweden) 

RCA4 

UQAM-CRCM5 Université du Québec à Montréal (Canada) CRCM5 

Source: Kisembe et al. (2019) 
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The process of producing downscaled rainfall projections using CORDEX involved two steps: 

The first step involved running GCMs for a base period (1981–2010) using observed/ natural 

and anthropogenic forcings such as green-house gas (GHG) concentration. This was followed 

by a transient future climate simulation for the period 2021–2040 using scenarios of time-

evolving GHG concentrations known as Representative Concentration Pathways (RCPs). The 

RCPs predict possible global future climate scenarios based on the level of GHG concentration 

(CO2, CH4, N2O, etc.) and represent the range of radiative forcing values by the year 2100 

(IPCC, 2014). The RCPs used in the study and their corresponding radiative forcing along with 

a CO2- equivalent concentration in 2100 are summarized in Table 3.4. 

Table 3.4: Description of RCP scenarios used in the study 

RCP Description 

RCP4.5 Total radiative forcing is stabilized without overshoot to 4.5 W/m2 (580–720 ppm 

CO2-equivalent) before 2100 by employing a range of technologies and strategies 

for reducing GHG emissions. 

RCP8.5 Rising radiative forcing to 8.5 W/m2 (>1,000 ppm CO2-equivalent) by 2100. It is 

characterized by increasing GHG emissions over time leading to high GHG 

concentration levels. 

Source: IPCC (2014) CO2: Carbon-dioxide W/m2: Watts/square meter    ppm: Parts per million 

One lower end stabilization scenario RCP4.5, and one high emission scenario RCP8.5, were 

selected to be used in this study as they cover the entire range of stabilization and high emission 

scenarios. For each RCP scenario, the projected daily rainfall for the four stations in the study 

area was aggregated into annual and seasonal (MAM, SON) totals after which the arithmetic 

mean method was used to estimate the average catchment rainfall for the period 2021-2040. 

By inputting the downscaled rainfall data into the estimated regression models, projections 

were made for low flow, average flow and peak flow for the period 2021-2040 by extrapolation. 

The effect of the natural logarithm (ln(x)) was removed by computing the exponent (ex) of the 

predicted flow values. 

The projected streamflow values were summarized using descriptive statistics and line plots 

were used to explore patterns in the forecasted series under both climate scenarios. In order to 

determine by how much streamflow will change in the catchment in the near future, the 

averages of the streamflow characteristics were compared between the study period (1981-

2015) and future period (2021-2040) using Mann-Whitney U-test to check for statistical 
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differences. Mann-Whitney U-test also called the Wilcoxon rank-sum test (Mann & Whitney, 

1947) is used to test the null hypothesis that two independent samples (groups) have the same 

distribution (also expressed as: the medians of two independent samples are not different). The 

test is non-parametric and hence does not require large normally distributed samples. All the 

analyses stipulated above were run using STATA version13. 
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CHAPTER FOUR  

RESULTS 

This section presents the results that were obtained using the methods described in the previous 

chapter. The findings are presented per specific objective of the study. 

4.1 Trend in streamflow over Mpologoma River catchment 

The results from descriptive analysis (Table 4.1) show that over the study period, River 

Mpologoma catchment on average recorded 4.0 m3s-1, 7.3 m3s-1 and 8.7 m3s-1 as the annual, 

Mar-May (MAM) and Sep-Nov (SON) low flow percentiles respectively. In regard to low flow 

duration, the catchment recorded 3.3 m3s-1, 6.2 m3s-1 and 5.7 m3s-1 as the annual, MAM and 

SON 7-day low flow on average. In regards to variation, majority of the low flow statistics 

exhibited a high degree of variability (CV > 60%). Generally, the low flow statistics were found 

to be relatively normally distributed (skewness < 1). 

Table 4.1: Summary of streamflow statistics (in m3/s) at Mpologoma River gauge station over 

the period 1981-2015 

Streamflow (No. of obs. = 35) Min. Max. Median Mean ± SD 
CV 

(%) 
Skewness 

Low 

flow 

Annual Q7min 0.11 8.79 2.96 3.3 ± 2.15 64.9 0.465 

Q90 0.10 9.48 3.46 4.0 ± 2.75 68.3 0.410 

MAM Q7min 0.11 12.83 6.77 6.2 ± 3.73 59.8 0.081 

Q90 0.02 18.06 5.09 7.3 ± 5.53 75.7 0.351 

SON Q7min 0.12 14.77 5.40 5.7 ± 3.87 67.4 0.553 

Q90 0.58 19.92 8.60 8.7 ± 5.88 67.5 0.199 

Average 

flow 

Annual Q7mean 6.34 43.83 20.94 21.5 ± 10.97 51.0 0.425 

Q50 5.50 39.57 14.75 17.7 ± 09.62 54.3 0.781 

MAM Q7mean 7.76 67.39 26.51 29.2 ± 17.49 59.8 0.660 

Q50 8.12 47.31 15.83 20.5 ± 11.71 57.0 1.036 

SON Q7mean 7.31 71.80 23.49 28.8 ± 17.48 60.6 0.808 

Q50 7.85 61.69 22.01 26.6 ± 15.69 59.0 0.674 

Peak 

flow 

Annual Q7max 15.60 145.52 48.09 60.4 ± 30.97 51.2 0.669 

Q10 16.18 110.18 43.29 46.2 ± 23.46 50.7 0.817 

MAM Q7max 15.59 124.36 39.11 50.3 ± 31.71 63.0 0.893 

Q10 15.54 110.40 37.82 46.7 ± 28.78 61.7 1.118 

SON Q7max 16.82 145.52 51.06 56.1 ± 30.81 54.9 0.803 

Q10 16.38 110.18 34.73 43.1 ± 25.95 60.3 1.041 

CV: Coefficient of Variation   SD: Standard deviation 

The results further show that over the study period, the catchment recorded 17.7 m3s-1, 20.5 

m3s-1 and 26.6 m3s-1 as the annual, MAM and SON median flow respectively. For average flow 
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duration, the catchment recorded 21.5 m3s-1, 29.2 m3s-1 and 28.8 m3s-1 as the annual, MAM and 

SON 7-day mean discharge on average. In regard to variability in the average flow statistics, 

the 7-day mean flow duration for the SON season showed the highest variability (CV=60.6%) 

whereas the MAM median flow was found to be the most highly skewed (skewness = 1.036). 

Other average flow statistics exhibited moderate skewness. 

Furthermore, the results indicate that over the study period, River Mpologoma catchment on 

average recorded 46.2 m3s-1, 46.7 m3s-1 and 43.1 m3s-1 as the annual, MAM and SON peak 

flow percentiles respectively. In regard to peak flow duration, the catchment recorded 60.4 m3s-

1, 50.3 m3s-1 and 56.1 m3s-1 as the annual, MAM and SON 7-day peak flow on average. It was 

also observed that the seasonal peak flow statistics were highly variable (CV > 60%) and highly 

skewed (skewness > 1) compared to the annual peak flow statistics. 

A plot of 7-day low flow against time for the MAM season shows a negative trend whereby a 

steady decline was observed in the low flow duration statistic with near-zero discharge 

recorded in 1984, 1992 and 1998 (Figure 4.1). The declining trend in low streamflow in the 

catchment is attributed to change in Climate and land use land cover change over the catchment 

(Luwa et al. 2021) 

 
Figure 4.1: Trend in low flow and Rainfall over time during MAM rainfall season 

On the contrary, a plot of the annual 7-day mean flow against time showed no trend. In other 

words, there was no consistent pattern in the average flow duration statistic. However, sharp 

declines in average flow were observed in 1984 and 2009 (Figure 4.2). 
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Figure 4.2: Trend in annual average flow and Rainfall over time 

A plot of 7-day peak flow against time for the SON season indicates an upward trend whereby 

a gradual rise was observed in the peak flow duration statistic with extreme values in the years 

2005 and 2011 (Figure 4.3). 

 
Figure 4.3: Trend in peak flow over time during SON rainfall season 

Results from the Mann-Kendall test (Table 4.2) confirm that over the study period, there was 

a statistically significant negative trend in low flow statistics for the MAM season (τ > -0.25, 

p < 0.05). In particular, the low flow percentile decreased at an average rate of 0.12 m3s-1 per 

year whereas the 7-day low flow duration declined at a rate of 0.27 m3s-1 per year. The results 

further confirm that there was no evidence of trend in both the annual and seasonal average 

flow statistics across the study period (p > 0.05). On the other hand, statistically significant 

upward trends were eminent in the peak flow statistics for the SON season (τ > 0.31, p < 0.05). 

In particular, the peak flow percentile increased at an average rate of 1.34 m3s-1 per year 

whereas the 7-day peak flow duration rose at a rate of 1.51 m3s-1 per year. The findings indicate 

however that the trends in the seasonal as well as annual low flow and peak flow statistics were 
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weak and non-significant (p > 0.05). Overall, there was a tendency of decreasing low flow in 

the MAM season and increasing peak flow in the SON season across R. Mpologoma 

catchment. This could be attributed to increase in surface flow in the rainy season which is 

related to reduced infiltration after the conversion of other land uses (Ashraf et al., 2020; Asare 

et al., 2021; Mewded et al., 2021) . 

Table 4.2: Mann-Kendall trend test on streamflow data at R. Mpologoma gauge station 

for the period 1981-2015 

Streamflow (No. of obs. n = 35) Kendall tau (τ) 
Significance 

(p) 

Trend slope 

(m3s-1 per year) 

Low 

flow 

Annual Q7min -0.052 0.6701 -0.027 

Q90 -0.072 0.5501 -0.027 

Mar-May Q7min -0.254 0.0332 -0.121 

Q90 -0.422 0.0004 -0.271 

Sep-Nov Q7min 0.217 0.0691 0.112 

Q90 0.156 0.1914 0.132 

Average 

flow 

Annual Q7mean 0.062 0.6092 0.035 

Q50 0.065 0.5894 0.010 

Mar-May Q7mean -0.123 0.3065 -0.398 

Q50 -0.176 0.1397 -0.315 

Sep-Nov Q7mean 0.187 0.1183 0.385 

Q50 0.113 0.3486 0.146 

Peak 

flow 

Annual Q7max 0.163 0.1728 0.779 

Q10 0.156 0.1914 0.364 

Mar-May Q7max -0.200 0.0938 -1.064 

Q10 -0.207 0.0832 -0.511 

Sep-Nov Q7max 0.318 0.0076 1.342 

Q10 0.435 0.0002 1.515 

 

4.2 Relationship between rainfall and streamflow in R. Mpologoma catchment 

Results from pairwise correlation analysis (Table 4.3) confirm that there was a moderately 

strong positive statistically significant relationship between annual rainfall volume and both 

annual median flow (r = 0.65, p < 0.05) and annual 7-day mean flow (r = 0.57, p < 0.05). The 

findings mean that an increase in annual rainfall brought about an increase in annual average 

flow and vice-versa. On the contrary, annual low flow and peak flow statistics showed no 

correlation with annual rainfall (p > 0.05). 
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Similarly, the study found a strong positive statistically significant relationship between MAM 

rainfall volume and each of the MAM low flow statistics, that is, low flow percentile (r = 0.66, 

p < 0.05) and 7-day low flow duration (r = 0.56, p < 0.05). These results mean that an increase 

in MAM rainfall corresponded to an increase in MAM low flow and vice-versa. On the other 

hand, there was no evidence of association between MAM rainfall and either of MAM average 

flow and peak flow statistics (p > 0.05). 

The results further suggest that there was a strong positive statistically significant relationship 

between SON rainfall volume and the SON peak flow statistics, that is, peak flow percentile (r 

= 0.69, p < 0.05) and 7-day peak flow duration (r = 0.70, p < 0.05). This means that an increase 

in SON rainfall was associated with an increase in SON peak flow and vice-versa. Conversely, 

the relationship between rainfall and both low flow and average flow statistics in the SON 

season was non-significant (p > 0.05). 

Table 4.3: Pairwise correlation coefficient matrix showing strength of relationship between 

streamflow statistics and rainfall volume for the period 1981-2015 

Streamflow (No. of obs. n = 35) 

Correlation coefficient (r) 

Annual rainfall MAM rainfall SON rainfall 

Annual 

Low flow 
Q7min 0.175   

Q90 0.314 

Average flow 
Q7mean 0.574* 

Q50 0.648* 

Peak flow 
Q7max 0.294 

Q10 0.207 

Mar-May 

Low flow 
Q7min  0.565*  

Q90 0.662* 

Average flow 
Q7mean 0.230 

Q50 0.108 

Peak flow 
Q7max 0.281 

Q10 0.309 

Sep-Nov 

Low flow 
Q7min   0.237 

Q90 0.213 

Average flow 
Q7mean 0.260 

Q50 0.279 

Peak flow 
Q7max 0.705* 

Q10 0.694* 
*Correlation is significant at 5% level. 
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From the correlation analysis, the streamflow statistics that showed a significant positive linear 

relationship with rainfall include: annual average flow, MAM low flow and SON peak flow. 

Results from the time series regression analysis (Table 4.4) show that the static models relating 

rainfall to transformed low flow statistics for the MAM season were significant fits (p* < 0.05). 

MAM rainfall accounted for about 25.7% and 23.1% of the variation in the transformed 7-day 

low flow duration and low flow percentile respectively. Similarly, the static models linking 

annual rainfall and transformed average flow statistics were good fits (p* < 0.05). Annual 

rainfall explained about 34.4% and 43.0% of the variation in the transformed 7-day mean flow 

duration and median flow respectively. Furthermore, the static models associating rainfall with 

transformed peak flow statistics for the SON season were significant fits (p* < 0.05). SON 

rainfall accounted for about 54.0% and 43.9% of the variation in the transformed 7-day peak 

flow duration and peak flow percentile respectively. 

Table 4.4: Time series (static) regression of streamflow on rainfall volume 

Dependent 

variable 

Predictor variable Coefficient 

(β) 

SD. 

error 

Test 

statistic (t) 

Signific

ance (p) 

95% Conf. Intv. 

Lower Upper 

ln(MAM 

low flow 

duration) 

MAM rainfall 0.005 0.001 3.38 0.002 0.002 0.008 

Intercept -1.028 0.769 -1.34 0.190 -2.592 0.535 

Goodness of fit:  Obs.(n)=35,  F-statistic=11.4,  p*=0.0019,  R-squared=0.257 

ln(MAM 

low flow 

percentile) 

MAM rainfall 0.007 0.002 3.15 0.003 0.003 0.012 

Intercept -2.263 1.188 -1.90 0.066 -4.680 0.154 

Goodness of fit:  Obs.(n)=35,  F-statistic=9.9,  p*=0.0035,  R-squared=0.231 

ln(Annual 

mean flow 

duration) 

Annual rainfall 0.002 0.000 4.16 0.000 0.001 0.003 

Intercept 0.191 0.662 0.29 0.775 -1.157 1.538 

Goodness of fit:  Obs.(n)=35,  F-statistic=17.3,  p*=0.0002,  R-squared=0.344 

ln(Annual 

median 

flow 

percentile) 

Annual rainfall 0.002 0.000 4.99 0.000 0.001 0.003 

Intercept -0.294 0.610 -0.48 0.633 -1.535 0.947 

Goodness of fit:  Obs.(n)=35,  F-statistic=24.9,  p*=0.0000,  R-squared=0.430 

ln(SON 

peak flow 

duration) 

SON rainfall 0.007 0.001 6.23 0.000 0.004 0.009 

Intercept 0.977 0.470 2.08 0.045 0.021 1.933 

Goodness of fit:  Obs.(n)=35,  F-statistic=38.8,  p*=0.0000,  R-squared=0.540 

ln(SON 

peak flow 

percentile) 

SON rainfall 0.006 0.001 5.08 0.000 0.003 0.008 

Intercept 1.039 0.509 2.04 0.050 0.002 2.075 

Goodness of fit:  Obs.(n)=35,  F-statistic=25.8,  p*=0.0000,  R-squared=0.439 

Q7min | Q90 = Low flow; Q7mean | Q50= Average flow;  Q7max | Q10 = Peak flow 
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The estimated regression models relating rainfall to low flow for the MAM season are: 

ln(𝑄̂7𝑚𝑖𝑛𝑡
) =  0.005𝑅𝑀𝐴𝑀𝑡

− 1.028      (4.1) 

ln(𝑄̂90𝑡
) =  0.007𝑅𝑀𝐴𝑀𝑡

− 2.263      (4.2) 

Findings from the time-series regression analysis indicate that for the MAM season, rainfall 

volume was a significant predictor of low flow statistics (p < 0.05). At any given time, a one-

mm increase in MAM rainfall resulted in a 0.7% immediate rise in low flow percentile and a 

0.5% instant rise in 7-day low flow duration, other factors held constant (Eqn. 4.1 and 4.2). 

The estimated regression models linking annual rainfall and annual average flow are: 

ln(𝑄̂7𝑚𝑒𝑎𝑛𝑡
) =  0.002𝑅𝐴𝑛𝑛𝑢𝑎𝑙𝑡

+ 0.191     (4.3) 

ln(𝑄̂50𝑡
) =  0.002𝑅𝐴𝑛𝑛𝑢𝑎𝑙𝑡

− 0.294      (4.4) 

Similarly, the results also show that annual average streamflow statistics were significantly 

influenced by annual rainfall volume (p < 0.05). Holding other factors constant, a one-mm 

increase in annual rainfall at a given time caused a 0.2% instant rise in both the median (50th) 

percentile flow and the 7-day mean flow duration (Eqn. 4.3 and 4.4). 

The estimated regression models associating rainfall with peak flow for the SON season are: 

ln(𝑄̂7𝑚𝑎𝑥𝑡
) =  0.007𝑅𝑆𝑂𝑁𝑡

+ 0.977      (4.5) 

ln(𝑄̂10𝑡
) =  0.006𝑅𝑆𝑂𝑁𝑡

+ 1.039      (4.6) 

The results further reveal that for the SON season, peak flow statistics were significantly 

affected by rainfall volume (p < 0.05). At any particular time, a one-mm increase in SON 

rainfall instantaneously raised peak flow percentile by 0.6% and 7-day peak flow duration by 

0.7%, other factors held constant (Eqn. 4.5 and 4.6). 

4.3 Projection of streamflow for R. Mpologoma catchment in the near future 

A plot of the projected low flow duration against time revealed no trend in the series with a 

more or less random pattern in the values under both RCP 4.5 and RCP 8.5 climate scenarios 

(Figure 4.4). However, an extreme discharge of 4 m3s-1 is expected in 2032 under RCP 8.5. 
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Similarly, the trend plots of projected average flow and peak flow duration statistics showed 

no consistent patterns in the series under both RCP 4.5 and RCP 8.5 climate scenarios with 

potential extreme values expected in the year 2034 for the latter scenario (Fig 4.5 and 4.6) 

 

Figure 4.4: Trend in forecasted low flow for the Mar-May rainfall season 

 
Figure 4.5: Trend in forecasted annual average flow for R. Mpologoma catchment 
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Figure 4.6: Trend in forecasted peak flow for the Sep-Nov rainfall season 

Findings from the Mann-Whitney test (Table 4.5) indicate that the average low flow for the 

MAM season is expected to significantly decrease in the near future under both climate 

scenarios. Under RCP 4.5, the average of 7-day low flow is expected to decrease by 72% 

whereas the average of low flow exceedance percentile will decline by 77%. Under RCP 8.5, 

the average of the 7-day low flow duration is expected to decrease by 66% whereas the average 

of low flow percentile will decline by 70%. Similarly, the results show that the annual average 

flow is expected to significantly decrease in the near future under both climate scenarios. Under 

RCP 4.5, the 7-day average flow is expected to decrease by 64% whereas median flow 

exceedance percentile will decline by 62%. Under RCP 8.5, 7-day average flow is expected to 

decrease by 61% whereas median flow exceedance percentile will decline by 58%. On the 

contrary, averages for the SON peak flow statistics (duration and exceedance percentile) 

projected for the near future are not expected to differ significantly from those of the study 

period under both climate scenarios.  

20

30

40

50

60

70

80

90

100

7
-d

a
y
 m

a
x
 f
lo

w
 (

m

3
s

-1

)

20
20

20
22

20
24

20
26

20
28

20
30

20
32

20
34

20
36

20
38

20
40

Time period

RCP 4.5 RCP 8.5



40 
 

Table 4.5: Comparison of average discharge between the past and future time periods 

Streamflow 

Median discharge (m3s-1) Difference in medians: 

Percentage change Study Future (2021-2040) 

1981-2015 

(n = 35) 

RCP 4.5 

(n = 20) 

RCP 8.5 

(n = 20) 

RCP 4.5 RCP 8.5 

MAM 

low flow 

Q7min 6.77 1.92 2.33 71.6%* 65.6%* 

Q90 5.09 1.17 1.54 77.0%* 69.7%* 

Annual 

avg. flow 

Q7mean 20.95 7.53 8.25 64.1%* 60.6%* 

Q50 14.75 5.63 6.23 61.8%* 57.8%* 

SON peak 

flow 

Q7max 51.07 40.19 52.18 21.3% -2.2% 

Q10 34.73 31.26 39.38 10.0% -13.4% 

*Difference in average discharge between future and study periods is statistically significant at 5% level 
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CHAPTER FIVE 

 DISCUSSIONS 

5.1 Trend in streamflow over Mpologoma River catchment 

To begin with, the current study shows that majority of the low flow statistics and peak flow 

statistics were highly variable over time in the Mpologoma River catchment especially during 

the rainfall seasons. The result implies that streamflow in the catchment is highly unpredictable. 

Such observations can be partly attributed to variations in climatic patterns that cause 

alterations in the hydrological cycle of water in catchment areas through increased evaporation 

and intense rainfall. This builds on the fact that most water catchments in Uganda heavily rely 

on rainfall for their streamflow (MWE - DWD, 2017). 

The significant negative trends in MAM flows and positive trend in SON flows have been 

reported by other researchers. Kansiime, Wambugu, & Shisanya (2013) noted that for areas 

around L. Kyoga basin particularly Mt. Elgon region, significant negative trends were eminent 

in volume of rainfall received during MAM season while the SON rainfall showed rising 

trends. Similar results were obtained by Kassian et al. (2017)  who studied trends in river flow 

in Iringa region in Tanzania for the period 1997-2014 and found a significant decreasing pattern 

in river flow. Luwa et al., (2021) who studied trends of rainfall, temperature and river flow in 

Sipi Sub-Catchment reported high river flows during the SON season compared to MAM. 

Onyutha, Turyahabwe, et al., (2021) also studied impacts of climate variability and changing 

land use/land cover on River Mpanga flows in Uganda, East Africa and observed increasing 

trends in river flows.  

The decrease in MAM flows is attributed to the fact that the region had undergone a long dry 

season DJF where the volume of most rivers is reduced due to high evaporation and low rainfall 

(Luwa et al., 2021). Luwa et al., (2021) further discusses that the increase in SON flows can 

be attributed to accumulation of water in the river and ground during the MAM season. 

Tusingwiire et al., (2023) also discusses that the low streamflows are attributed to the poor land 

management practices. The increase in streamflow can lead to erosion and sedimentation which 

can be derimental to the quality of water (Onyutha, Turyahabwe, et al., 2021) from River 

Mpologoma. 
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5.2 Relationship between rainfall and streamflow in R. Mpologoma catchment 

The current study found strong positive correlations between rainfall volume and streamflow 

statistics in R. Mpologoma catchment. Rainfall was found to significantly influence streamflow 

within the catchment. In particular, low flow and peak flow were strongly associated with 

MAM and SON seasonal rainfall respectively. Overall, an increase in rainfall volume resulted 

in an instantaneous rise in stream flow duration and exceedance percentiles at any given time. 

These results confirm findings by Tumusiime & Ageet (2018) whose findings revealed that 

climate change has already affected water resources in L. Kyoga catchment with continuous 

reduction in water levels by about 6%. 

Overall, an increase in rainfall volume resulted in an instantaneous rise in stream flow duration 

and exceedance percentiles at any given time. The strong positive correlations between rainfall 

volume and streamflow statistics in R. Mpologoma catchment have been reported by other 

researchers. Tumusiime & Ageet (2018) revealed that climate change has already affected 

water resources in L. Kyoga catchment with continuous reduction in water levels by about 6%. 

The results further concur with findings by (Kassian et al., 2017) who studied the implication 

of climate change and variability on the river flow in Iringa region in Tanzania. They observed 

a gradual decline in river flow and attributed it to significantly declining rainfall in the recent 

past. Kangume & Mulungu, (2018) also  asessed  the Impacts of Climate Change on 

Streamflow in Malaba River Catchment, Uganda and concluded that fluctuations in rainfall 

have contributed to fluctuations in streamflow.  

Variation in rainfall cannot explicitly explain the total streamflow variance. Onyutha, 

Turyahabwe, et al., (2021) point out that other factors which influence rainfall-streamflow 

variations are rates of infiltration, evaporation, percolation and river water abstraction. Other 

factors that contribute to streamflow variance include impacts of human activities such as water 

abstractios for agricultural, industrial and domestic needs (Tusingwiire et al., 2023). 

5.3 Projection of streamflow for R. Mpologoma catchment in the near future 

Results on projection of streamflow showed that low flow during the MAM rainfall season and 

annual average flow are expected to significantly decrease in the near future. Both low flow 

and average flow statistics (duration and exceedance percentile) are projected to decline under 

RCP 4.5 and RCP 8.5 climate scenarios. The results point towards increased risk of prolonged 

dry spells during the MAM season and a general decline in discharge in the near future. This 

implies that water availability in the catchment is expected to reduce particularly during the 
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first rainfall season which will have negative impacts on agricultural production and farmers 

livelihoods in general given that MAM is a major cropping season (Verdonck & Michel, 2016). 

The results are in line with suggestions by Taylor et al. (2014) who argue that climate change 

and variability are already affecting the availability of water in Uganda and this is expected to 

increase over time. They pointed out that in recent years the country has been subjected to 

changes in precipitation patterns, increased frequency of floods and droughts, and changes in 

evaporation due to higher temperatures. According to (IPCC, 2008), such changes in climate 

are expected to affect the quantity and quality of water which will increase the level of 

vulnerability of poor rural farmers due to food insecurity.  

The results support reports by IPCC (2008) who note that climate change in form of variability 

in precipitation is likely to affect both the quantity and quality of water in streams and rivers 

and this will increase the level of vulnerability of the poor rural farmers due to increased risk 

of food insecurity. The results are consistent with findings by Devkota & Gyawali (2015) who 

assesed the impacts of climate change on hydrological regime of the Koshi River Basin in 

Nepal from which they projected a future decrease in monthly flow by more than 30% in the 

drier months and an increase by more than 25% in the peak flow months. However, their 

findings relayed that climate change was less likely to pose a major threat to average water 

availability. 

The results of the current study however differ from findings by Tumusiime & Ageet (2018) 

who reported that climate change is likely to increase precipitation received in L. Kyoga 

catchment during the wet seasons by 10-20% resulting in higher stream flow. Similarly, the 

results do not agree with findings by Bates et al. (2008) who assert that by the middle of the 

21st century, annual average river runoff and water availability are projected to increase as a 

result of climate change at high latitudes and in some wet tropical areas. The results also differ 

from suggestions by Kigobe & Griensven (2010) whose simulations of the hydrological 

response of Mpologoma catchment in L. Kyoga basin to changes in future climate reveal basin-

wide increase in rainfall and subsequent increase in streamflows for the Mpologoma basin in 

the near future (2050s) 

The results of this study are in contrast with findings by Taye, Ntegeka, Ogiramoi, & Willems 

(2011) who examined the potential impact of climate change on hydrological extremes in two 

catchments of the Nile River Basin under two future climate scenarios and their findings 

projected increasing peak flows for the catchments during the 2050s. Similarly, the results do 
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not align with observations by Adem et al. (2016) who examined future impact of climate 

change on streamflow in the upper Gilgel Abay catchment of the Blue Nile basin in Ethiopia 

using two emission scenarios and predicted a systematic increase in precipitation which was 

expected to increase mean annual streamflow by 7 percent in the 2020s. 

Conversely, the current study showed that peak flow during the SON rainfall season is not 

expected to change significantly in the near future period under both climate scenarios. The 

results compare well with suggestions by Aich et al. (2014) who modeled the impacts of 

climate change on streamflow in four large African river basins under two future climate 

scenarios and found no significant climate change impact on projected streamflow in most of 

the basins. In addition, they found no clear trend  in projected discharge. The results 

however,differ from suggestions by (Bates et al., 2008) who argue that by the middle of the 

21st century, annual average river runoff and water availability are projected to increase in the 

tropical regions across the globe as a result of climate change in form of increased precipitation 

intensity and variability which will increase the risks of flooding in these areas.  
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CHAPTER SIX 

 CONCLUSIONS AND RECOMMENDATIONS 

6.1.Conclusions 

• The trend in stream flow declined in the MAM season but increased in the SON season, 

thus highlighting a major concern of uncertain water availability for the majority of the 

population living in the catchment that depends on steam water sources for agricultural 

production and livelihood support.  

• The streamflow and rainfall had a strong positive relationship for the low flow MAM 

season and high flow for SON season 

• There will be a decline in streamflow in the MAM season with low flows under the 

RCP 4.5 for  the near future scenario, an indication of possible water stress for both 

domestic and economic demands in the year to come. 

 

6.2 Recommendations  

• There is need for early maturing and drought tolerant varieties in agricultural related 

investment that can adapt the low water supply conditions especially for the MAM 

where there was notable declining streamflow patterns 

• The peak flows and low flows characteristics can be used in assessing the risk of floods 

and droughts in MAM and SON for river-based catchment analyses or studies 

• There is need to plan on how to avert the disasters arising from climate change given 

the future prediction observed under the RCP 4.5 and in similar setting should focus on 

a comprehensive assessment of streamflow response to other climatic variables besides 

rainfall such as temperature and evapotranspiration, and considering also the effect of 

land-use/ land-cover 

• There is need to install equipment for early warning system gargets along most streams 

so as to get proper information for all researchers and managers in the catchment 
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APPENDIX I 

Table A: Pettit test for homogeneity on original discharge and original rainfall series 

Monthly average discharge (m3s-1) Monthly total rainfall (mm) 

No. of obs. 

(n) 

Test statistic 

(U*) 

Significance 

(p) 

No. of obs. 

(n) 

Test statistic 

(U*) 

Significance 

(p) 

420 3458 0.760 420 4555 0.374 

P-values larger than 0.05 indicate that series are homogenous and hence suitable for analysis 

 

Table B: Dickey-Fuller test for stationarity of log-transformed streamflow statistics 

Transformed streamflow Obs. (n) Test statistic Significance (p)* 

Annual Log (Q7mean) 34 -6.065 0.0000 

Log (Q50) 34 -4.861 0.0000 

MAM Log (Q7min) 34 -5.658 0.0000 

Log (Q90) 34 -5.896 0.0000 

SON Log (Q7max) 34 -6.535 0.0000 

Log (Q10) 34 -4.686 0.0001 
*P-values lower than 0.05 indicate that the log-transformed series are stationary 

Table C: Diagnostics checks for classical linear assumptions (tests on model residuals) 

Fitted model 

Shapiro-Wilk test for normality 

No. of observations (n) = 35 

Portmanteau test for white noise 

No. of observations (n) = 35 

Test statistic (W) Significance (p) * Test statistic (Q) Significance (p) * 

Equation 4.1 0.947 0.0896 18.857 0.2203 

Equation 4.2 0.944 0.0721 12.761 0.6207 

Equation 4.3 0.967 0.3720 15.966 0.3843 

Equation 4.4 0.965 0.3213 16.191 0.3694 

Equation 4.5 0.976 0.6438 11.109 0.7448 

Equation 4.6 0.971 0.4654 11.654 0.7050 
*P-values > 0.05 show that the model residuals are independent and normally distributed 
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Figure A: Projected monthly rainfall for R. Mpologoma catchment for 2021-2040 
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